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Two-body polyelectrolyte-mediated bridging interactions
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We investigate theoretically polyelectrolyte bridging interactions on the two-body level. The model
system is composed of two macroions with two oppositely charged flexible chains. The electrostatic
interactions are treated on the Debye–Hu¨ckel level. The formal level of the theory is provided by
the Feynman–Kleinert variational method generalized to include also self-interactions between
polyelectrolyte segments. The variational equations are shown to exhibit two solution branches
corresponding tostrongandweakcoupling, whereas conformations of the chain can be described as
weaklyor strongly paired. We investigate the effective pair interaction between the macroions in the
parameter space and comment on the relevance of the calculation for bridging interactions in
experimental context. ©2003 American Institute of Physics.@DOI: 10.1063/1.1570400#
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I. INTRODUCTION

Polyelectrolytes are ubiquitous in colloidal systems a
play a fundamental role in determining the interactions
tween as well as stability and structure of various molecu
assemblies.1 Their effect on colloidal interactions has bee
studied and exploited in various technological contexts ra
ing from the paper industry to the pharmaceutical indust2

It seems, however, that their most basic role is played in
biological context where their importance can be har
overestimated. They are an essential and fundamental c
ponent of the cellular environment and make their mark in
every structural and functional aspect.3

The behavior of polyelectrolytes in biological conte
has without any doubt been one of the focuses of soft ma
research for quite a few years now.4 The intense work on the
interactions and mesophase behavior of the most stu
polyelectrolyte in the biological context if not in general—
i.e., DNA—has elucidated many fascinating physical aspe
of this molecule and the repercussions that they have on
structure and function of biological matter.5 The mesoscopic
interactions between many DNA molecules6 and elastic
properties of single DNA molecules in different solutio
conditions7 have been measured directly and are underst
on a fundamental physical level. Not all biological polyele
trolytes or all solution conditions have been or indeed can
studied at quite the same level of detail. Sometimes a lot
information than direct measurement of molecular inter
tions at all macromolecular densities is experimentally av
able. Studies at low macromolecular densities in syste
where polyelectrolyte behavior is expected to show its m
usually only lead to second virial coefficients and not co
plete interaction curves.8–10 This is not due to poorly de
signed experimental setup, but shows a rather fundame
limit in the amount of information that can be provided b
experiments at these conditions. In this situation one ha
rely heavily on different models of the mesoscopic inter
tion potential and the way they transpire through the m
11280021-9606/2003/118(24)/11286/11/$20.00
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sured second virial coefficient. This is the first point of d
parture of this work.

The second one is a very peculiar interaction in po
electrolyte systems, where long charged polymers can m
ate interactions between macroions of opposite charge~Ref.
11 and references therein!. The termbridging interactionsis
usually applied to this situation where a single chain c
adsorb to different macroions and via its connectivity a
elasticity mediate attractive interactions between the
These interactions have been studied intensively b
experimentally12 as well as theoretically.13–16 Surface force
apparatus and atomic force microscopy have provided di
data on the separation dependence of the bridging interac
between macroscopic surfaces with polyelectrolyte chains
ther grafted or in chemical equilibrium with a bul
solution.12 Theoretical work has added a clear mesosco
picture for the bridging interaction between macroscopic s
faces and elucidated the effects of salt and nonelectros
excluded volume effects on the strength and range of
interaction.13–16Since it is based on sometimes severe mo
or formal restrictions, there is no single theoretical approa
that is able to account for all experimentally observed det
or is able to explore in comparable details all the regions
the parameter phase space.11 The fact that the effects of the
bridging interaction between small macroions15 as opposed
to macroscopic surfaces11 have been studied to a muc
smaller extent thus makes a strong point for its re-evaluat

The main motivation for this task is recent experimen
on the second virial coefficient of the nucleosomal core p
ticles ~NCP! in the low-density regime at various solutio
conditions.10,17 NCPs represent the lowest level of the chr
matin organization in eucaryotes and have recently been
solved at an atomic resolution.18 They consist of a histone
protein octamer core with 146 bp of DNA tightly wrappe
around it, giving it an approximate cylindrical shape of
radius;55 Å, a height of;57 Å, and a structural charge o
;2250. This complex is stable in an aqueous solution fr
1 to 750 mM monovalent salt ionic strength.17 The charged
histone N-termini or N-tails can desorb from this compl
6 © 2003 American Institute of Physics
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11287J. Chem. Phys., Vol. 118, No. 24, 22 June 2003 Two-body polyelectrolyte mediated bridging interactions
and basically play the role of grafted flexible polyelectroly
chains of an approximate total charge of;190. They remain
essentially adsorbed to the DNA segment of the NCP at
ionic strength, but tend to assume a more extended con
mation as the ionic strength is increased.10 The application of
classical19 and manometric20 osmometry provided data o
the osmotic pressure of the NCP in NaCl solutions of va
able ionic strength from which the second virial coefficie
was deduced quite accurately.10 It was demonstrated that th
second virial coefficient is a nonmonotonic function of t
ionic strength, and a plausible though tentative hypothe
was given that the nonmonotonicity of the second virial c
efficient might be due to the bridging interaction mediated
the extended N-tails of the NCPs.10 A very similar nonmono-
tonic dependence of the second virial coefficient was s
also in apoferritin solutions where a bridging interpretation
hard to envision.9

Motivated by this important experimental result and
tentative interpretation, we embarked on a detailed stud
the interaction between charged macroions with grafted
positely charged polyelectrolyte tails as a function of t
ionic strength of a monovalent bathing salt solution. T
level of the theoretical calculation had to be considered
would allow for a straightforward evaluation of the seco
virial coefficient, being an integral of the underlying intera
tion potential, and its dependence on the ionic strength. A
since the N-tails in the motivating experiment cannot be c
sidered as infinitely long—i.e., there are finite-size effe
that need to be taken properly into account—it seems th
mean-field~MF! theory of bridging interactions as formu
lated for the case of interacting charged planes and base
the ground-state dominance ansatz13,16 cannot be simply
implemented to the present case. Finite-size effects are q
difficult to deal with on the MF level, especially if one nee
to evaluate the interaction potential between macroions
very large~ideally infinite! range of separations. In view o
all this we formulated a variational21 two-particle ~two-
macroion! theory of the bridging interaction that starts fro
an explicit mesoscopic polyelectrolyte model and includ
the interactions of the polyelectrolyte chain with the mac
ions, the interactions of the chain with itself and, connec
with it, the effect of the electrostatic stiffening of the cha
as well as the configurational entropy of the chain. In so
respects the theory proposed here could be viewed upon
variational version of the Asakura–Oosawa theory.22 The fi-
nite size of the chain can be relatively straightforwardly de
with on this level of the theory and gives rise to importa
features of the two-particle bridging interaction that are l
in the simplest, ground-state dominance formulation of
MF theories.

The organization of the paper is as follows: We will fir
describe the model and give an introduction to a modifi
variational Feynman–Kleinert approach to the polyelect
lyte chains. We will derive the main equations and so
them numerically for different conditions. We will show th
in general the bridging interactions for this model syst
comes in two varieties that we dub thestrong- and weak-
coupling limits. The form of the total interaction between t
macroions will be obtained numerically for all values of t
Downloaded 15 Jun 2003 to 193.2.6.210. Redistribution subject to AIP
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intermacroion separation as a function of system parame
such as the amount of fixed charge on the macroions,
length of the polyelectrolyte chain, and the screening len
of the intervening bathing solution. We will discuss the ram
fications of these results for the salt dependence of the
ond virial coefficient and point to the possible shortcomin
of the calculation and guess about a way to possibly circu
vent them. We will finally comment on the significance
the present calculation for the understanding of the bridg
interaction in the NCP solution system.

II. MODEL

The model system that we take as the starting poin
our theoretical investigation of the bridging interaction
quite simple: it is composed of two spherical point mac
ions with M negative fixed charges plus two opposite
charged chains, each withN monomers, one per each mon
mer. The pair interaction potentialu(r 8,r ) between all the
charges in the system will be taken of the screened Coulo
~Debye–Hu¨ckel! form1

u~r 8,r !5
e0

2

4pee0

e2kur2r8u

ur2r 8u

or else u~k!5
ee8

ee0~k21k2!
, ~1!

in real or Fourier space, the form we will need later on.k is
the inverse Debye length,e0 is the elementary charge, on
per each Kuhn’s length, and the rest of the notation is st
dard. Obviously, counterions are not explicitly included
this model. The interaction potential between the po
electrolyte and macroion charges is assumed of a sim
form: viz.,

fext~r !5
e1e0

4pee0

e2kur2r1u

ur2r1u
1

e2e0

4pee0

e2kur2r2u

ur2r2u
1¯ ,

~2!

wherer1 , r2 , etc., are the positions of macroions and th
charges aree15e25Me0 , etc. Our model is thus a ver
straightforward generalization of many macroions of t
model used in polyelectrolyte adsorption studies.23

We will use a standard~Edwards! model24 for the poly-
electrolyte chain where the mesoscopic Hamiltonian has c
tributions from chain connectivity, interactions between t
segments of the chain and the interaction with an exte
field due to the presence of two macroions. It is written a

bH@r i~n!#5
3

2,2 (
i 51

2 E
0

N

ṙ i
2~n!dn

1
1

2
b (

i , j 51

2 E
0

NE
0

N

u„r i~n8!,r j~n!…dn dn8

1b(
i 51

2 E
0

N

fext„r i~n!…dn, ~3!

where, is the Kuhn’s length andu(r 8,r ) is the pair interac-
tion potential, whilefext(r ) is the external interaction poten
tial. The indicesi, j stand for the two polyelectrolyte chains
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Figure 1 schematically presents the mesoscopic mode
which the present evaluation of the bridging interactions
based. Clearly, the nonpairwise additive effects, such
bridging between multiple macroions mediated by a sin
chain, have been completely disregarded in this model.
finite macroion size effects have also been disregarded. A
the model is based on a linear theory~Debye–Hu¨ckel! of
Coulomb interactions and thus cannot capture nonlinear
such as charge renormalization or counterion condensa
It can, however, take into account the electrostatic stiffen
of the chain as well as the finite chain size effects.

The grafting of the chains to their respective macroio
is not taken into account explicitly on the Hamiltonian lev
First of all, in this model system the effects of grafting a
small or indeed negligible15 to the extent that they are alway
overpowered by the much stronger electrostatic interactio
This would of course not be the case for, e.g., electrost
brushes where grafting has to enter the description of
chain already at the Hamiltonian level. The grafting of t
chains is only taken into account via their center-of-m
coordinates in the way explained later.

III. VARIATIONAL ANSATZ AND FORMALISM

Since the interactions with external fields as well as
self-interactions along the polymer chains are highly non
ear in terms of their spatial dependence, the statistical i
gral corresponding to Eq.~3! is in general impossible to
evaluate analytically and is difficult to evaluate even a
proximately. Instead of taking recourse to a numerical
proximation, we will rather introduce a harmonicvariational
ansatz25,26 that will make the evaluation of the statistical in
tegral straightforward. The parameters of the variational
satz will be chosen so as to minimize the upper bound of
exact free energy. This procedure is generally known as

FIG. 1. Schematic representation of the model and the nature of the v
tional solutions. LHS: the strong-coupling solution branch. The conform
tion of the chain is determined mostly by the interaction with the two m
roions. It can be either in the weakly~upper! or strongly ~lower drawing!
paired configuration, depending on the separations between the macro
The attractive bridging interaction is strongest in the strongly paired c
figuration. RHS: the weak-coupling solution branch. The conformation
the chain is determined mostly by the self-interactions of the chains. T
are in the weakly paired configuration for any separation between the m
roions. On approach the interpenetration of the monomer clouds~the ‘‘co-
ronas’’! leads to prevalently repulsive interactions. Note that the macro
are treated as point particles in the calculation and that their size is
exaggerated in this drawing.
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Feynman–Kleinert variational method,26 and its application
to the case of self-interacting polymer chains in the bulk h
been discussed in detail elsewhere.21 It was shown that it
captures all the salient features of polyelectrolyte behavio
the bulk.

The details of the variational approach are as follows21

the two polyelectrolyte chains are treated as Gaussian b
positioned at their centers-of-mass,r01 andr02, respectively.
The width of the Gaussian blobs is determined variationa
from the strength of the external fields as well as se
interactions along the chain.26 The Gaussian blobs thus be
have as effective ‘‘particles’’ with finite extensions. In th
respect we can claim that the present theoretical framew
represents a kind of Asakura–Oosawa theory where the
fective size of the macroions is determined variationally. T
final statistical integral is then obtained by integrating ov
the two centers-of-mass,r01 and r02, i.e., the coordinates o
the effective~Asakura–Oosawa! ‘‘particles,’’ or indeed by
finding the configuration of the centers-of-mass that giv
the largest contribution to this integral.27

For the variational ansatz corresponding to two effect
Gaussian chains we will chose a general harmonic Ham
tonian of the form21

bH0@r i~n!#5
3

2,2 (
i 51

2 E
0

N

ṙ i
2~n!dn

1
3

2 (
i 51

2

z i
2~r0i !E

0

N

@r i~n!2r0i #
2dn

1bNL~r01,r02!, ~4!

with periodic boundary conditions forr i(n). This ansatz is
obviously still dependent onr0i for i 51,2, which stand for
the centers-of-mass of the two chains, i.e.,r0i

5(1/N)*0
Nr i(n)dn, as well as the functionsz i(r0i) and

L(r01,r02), which will be determined variationally.
The term withz i

2(r0i) obviously represents an extern
harmonic potential, centered onr0i , which acts either to con-
fine or expand the chain, depending on its sign. A sim
limiting form of z2 can be derived only for the case of
single self-interacting chain and is given in Ref. 21. In E
~4! this term was taken with a positive sign, but we w
argue later that it can as well be negative. The te
bNL(r01,r02) simply represents the value of this harmon
external potential at the centers-of-mass of both cha
Again, a simple limiting form ofbNL can be derived only
for the case of a single self-interacting chain.21 As will be-
come clear when we proceed, both quantities depend
complicated way on the interactions between the monom
as well as on the interactions between the monomers
external macroions.

The statistical integral for the variational ansatz can
obtained in the following form:21

J0~N!5E D@r1~n!#E D@r2~n!#e2bH0@r i ~n!#

5E E d3r01d3r02e2bF0~r01 ,r02!. ~5!
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The two polymer chains are thus represented as two effec
Gaussian ‘‘particles’’ with an effective Hamiltonian given b
F0(r01,r02). The details of the implementation of th
Feynman–Kleinert ansatz26 for ~self!interacting polymer
chains have been given before,21 and we will rely on the
formal developments described in that work. First of all,
us introduce the radius of gyration defined as

ai
2~r0i !5

1

3N E
0

N

^~r i~n!2r0i !
2&dn5

1

3z i
LS z i,

2N

2 D ,

~6!

whereL(x)5cothx21/x is the standard Langevin function
One can then derive21 that minimization of the upper boun
of the variational free energy with respect to the functi
L(r01,r02) leads to the following equation:

bNL~r01,r02!52
3

2 (
i 51

2

z i
2~r0i !Nai

2~r0i !

1bW~r01,r02!, ~7!

with

bW~r01,r02!5bE d3r fext~r !r~r ,r01,r02!

1
1

2
bE E d3r d3r 8 r~r ,r01,r02!

3u~r ,r 8!r~r 8,r01,r02!. ~8!

W(r01,r02) obviously represents the total interaction free e
ergy, due to self-interactions as well as interactions with
ternal fields, of a smeared monomer cloud with a Gauss
density distribution.r(r ,r01,r02) stands for the combined
monomer density function of the two chains and has
form

r~r ,r01,r02!5ra
1
2~r ,r01!1ra

2
2~r ,r02!, ~9!

where for each of the chains the monomer density distri
tion function is given by

ra
i
2~r ,r0i !5

N

~2pai
2!3/2exp2

ur2r0i u2

2ai
2

or else ra
i
2~k!5N exp2

k2

2ai
2 ~10!

in real and Fourier space, the form we will need later
Taking now the form of the self-interaction and the exter
fields as in Eqs.~1! and ~2!, we obtain the following result:

W~r01,r02!5 (
k51

2

Fa
1
2~r012r k!1 (

k51

2

Fa
2
2~r022r k!

1 (
k51

2

Wi1Wa1 ,a2
~r01,r02!. ~11!

Here r i stand for the position of the two macroins~to be
distinguished from the position of the two centers-of-mass
the polymer chains,r0i). F ’s are due to the interaction of th
chains with external fields and can be written in the form
Downloaded 15 Jun 2003 to 193.2.6.210. Redistribution subject to AIP
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i
2~r2r 8!5E d3k

~2p!3 ra
i
2~k!u~k!eik•~r2r8!. ~12!

The self-interactions of the chains correspond to the te
Wi and are given by

Wi5E d3k

~2p!3 ura
i
2~k!u2u~k!, ~13!

and finally the interactions between the two chains that
be derived in the form

Wa1 ,a2
~r ,r 8!5E d3k

~2p!3 ra
1
2~k!u~k!ra

2
2~2k!eik•~r2r8!.

~14!

This is all straightforward generalization of the variation
theory set up previously for a single chain.21 The functions
z i(r0i) are next obtained by minimizing the upper bound
the exact free energy with respect toai

2, leading to

3

2
z i

2~r0i !N5b
]

]ai
2 W~r01,r02!. ~15!

The effective center-of-mass free energy of the two polym
chains is finally given by the expression

bF0~r01,r02!53(
i 51

2

log

sinh
z i,N

2

z i,N

2

2
3

2 (
i 51

2

z i
2Nai

2

1bW~r01,r02!

5bF2~r01,r02!1bW~r01,r02!, ~16!

where we separated out the harmonic part of the free en
bF2(r01,r02). The first two terms of this variational fre
energy represent the entropy of the Gaussian chain, and
last one is due to the interactions with the external fields
self-interactions. These are the basic equations of
Feynman–Kleinert variational theory as applied to the s
interacting polyelectrolyte chains. They are still quite co
plicated because of the dependence on the center-of-m
coordinatesr0i and the final integration over these variabl
in Eq. ~5!.

If there are no external fields that break the translatio
symmetry of the problem, it can be easily seen21 that the
dependence onr0i vanishes and the solution of the vari
tional equations is straightforward. With external fields t
final quite complicatedr0i integration can be obtained onl
numerically. In the case thatF0(r01,r02) scales with a posi-
tive power ofN andN is large enough; there is, however, a
additional quite accurate approximation to circumvent t
final integration.27 It consists of the saddle point evaluatio
of the final integration with respect tor0i—that is, of an
additional minimization ofF0(r01,r02) with respect tor01 as
well as r02. This means that Eq.~5! can be written in an
approximate form
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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J0~N!5E E d3r01d3r02e2bF0~r01 ,r02!'e2bF0~r01* r02* !,

~17!

where r01* , r02* are given as solutions of the saddle po
condition

]F0~r01* ,r02* !

]r01*
5

]F0~r01* ,r02* !

]r02*
50. ~18!

Thus we obtain a simple explicit and accurate estimate
the free energy of two self-interacting polyelectrolyte cha
in an external field: viz.,F52kTJ0(N)'F0(r01* ,r02* ). In
what follows we will always assume that all the solutions
the variational equations have to be symmetric with resp
to the two chains. There is no reason on the pair-poten
level to assume otherwise.

Since the solution of variational equations is in gene
quite complicated, we give here a little preview of what e
actly we will be calculating in what follows. We will show
that grosso modothe solution of the variational problem ha
two branches depending on the relative magnitudes of
interaction with external fields and the self-interaction a
mutual interaction of the chains. The two branches of
solution are the following.

~i! What we call astrong-coupling branch, which corre-
sponds toz i

2(r0i).0 in the variational equation~5! and thus
to the dominance of the interactions of the chains with
external macroion fields, the self-interaction and mutual
teraction of the chains being a small perturbation. T
strong-coupling branch furthermore bifurcates into two d
ferent subbranches depending on the solution of the a
tional minimization implied by Eq.~18!: in theweakly paired
subbranch the chains are associated each with its own g
ing macroion and in thestrongly paired subbranch both
chains share the two macroions on the average.

~ii ! And what we term aweak-coupling branchwhere
z i

2(r0i),0 and thus corresponds to the case where the s
interaction and mutual interaction of the chain are domin
and the interactions with external macroion fields are per
bative.Coupling in both cases thus refers to coupling wi
the external macroion field.

In both cases we can in general observe some bridg
effects, but they are several orders of magnitude stronge
the first case. Nevertheless, they are always present to s
extent. After this introductory survey of the nature of t
solutions of the variational problem, we are ready to fi
these solutions explicitly.

A note on the grafting of the chain is in order at th
point. Both in theweakly pairedas well as thestrongly
paired states the electrostatic adsorption energy more t
the grafting itself determines the statistics of the chain. Gr
ing the chains, by fixing, e.g.,r i(0) to be at the surface of th
macroion, would change none of the conclusions reac
below, provided of course that the size of the macroions
small compared to the size of the chains and that we h
only one chain associated with each of the macroions
would, however, introduce some serious complications i
our formalism, thus obscuring its straightforward interpre
tion.
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IV. SOLUTION OF THE VARIATIONAL EQUATIONS

We are now ready to solve the general variational eq
tions for the case of two polyelectrolyte chains with tw
external point macroions. As we already announced, we c
sider only symmetric solutions for whicha1

25a2
25a2, but in

general withr01Þr02. This symmetrization will be applied
to the results derived below in their final form.

A little straightforward algebra then leads to the follow
ing form of the total variational free energy, Eq.~16!:

bFa
i
2~r2r 8!52

,BMN23/2

pa
f 1S&a Ur2r 8U , ka

&
D ,

bWi5
,BN2

pa
f 1~0,ka!,

bWa1 ,a2
~r ,r 8!5

4,BN2

pa
f 1S 1

a Ur2r 8U,kaD . ~19!

,B5e0
2/4pee0kT was introduced above as the Bjerru

length. Also, we defined the following function:

f l~y,t !5E
0

` u sinuye2lu2

y~u21t2!
du

5
p

4y
ely2F2e2yt2e2ytErfcS y

2Al
2tAl D

2eytErfcS y

2Al
1tAl D G , ~20!

where Erfc(x) is the standard complementary error functio
On the other hand, the variational equation~15! can be ob-
tained just as straightforwardly as

b
]

]a1
2 W~r01,r02!

5
,BN

pa3 F23/2M (
k51

2

gS&a Ur012r kU , pa

&
D

22NgS ur012r02u
a

,kaD2Ng~0,ka!G . ~21!

A similar equation could be obtained also fo
b(]/]a2

2)W(r01,r02) except thatr01 on the right-hand side
~RHS! would be turned intor02. The following new function
was defined above

g~y,t !52
]

]l
f l~y,t !ul51 . ~22!

What the variational equation~21! really asserts is which
terms are important in determining the statistical conform
tion of the chain: i.e.,ai

2 in our case. The first term on th
RHS of Eq.~21! is due to the interactions with the macro
ions, the second one is due to the interactions between
two chains, and the last one is the self-interaction of
chains. The conformation of the chain as described byai

2 is
thus determined by the relative magnitudes of these th
terms.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The properties of the solution of the variational equat
~21! first of all depend crucially on the sign of the RHS
Eq. ~21!, thus on the fact whetherz2 is positive or negative.
The sign of this term tells for each value of the separat
between the macroions whether it is the interactions with
external fields or the self-interactions of the chain that de
mine the statistical conformation of the chain.

In view of the form of the variational ansatz, Eq.~4!, the
positive sign corresponds to a general confinement of
chain if compared to the case with no interactions. We w
refer to the ensuing interactions between the two macro
mediated by the polyelectrolyte chain as thestrong-coupling
limit. In the opposite case the chain is expanded if compa
to the case with no interactions, and we will refer to t
ensuing polyelectrolyte mediated interactions as theweak-
coupling limit. Both terms will be explained further below
The final closure for this system of variational equations
provided by the relation betweenz anda, Eq. ~6!.

Since in this model the external macroions break
translational symmetry of the system, we apply also
minimization condition, Eq.~18!, with respect tor01 as well
as r02, in order to avoid the final complicated integral ov
the centers-of-mass of the two polyelectrolyte chains. T
minimization introduces additional features of the solutio
of the variational equations. Taking into account t
Gaussian-like form of the functionf 1(y,t), we realize that
there are in fact two different symmetric solutions to E
~18!: ~i! r015r1 and r025r2 , i.e., each of the chain remain
associated with its grafting macroion, and~ii ! r015r02

5 1
2(r11r2), i.e., each chain is shared by the two macroio

symmetrically.
Here we assumed that the first chain is grafted to the

macroion while the second one is grafted to the second m
roion. We refer to the configuration of the polyelectrol
chains in the first case asweakly pairedand in the second
case asstrongly paired. The terms are self-explanatory: i
the first two cases the chain is confined to one of the ma
ions, whereas in the second case it is confined or bound
both of them. A schematic representation of the solutions
the variational equations is presented in Fig. 1.

V. STRONG-COUPLING LIMIT

Once againstrong couplingmeans that external field
dominate the statistical configuration of the chain and t
z2.0. In this domain of the parameter space the effect of
interactions of the polyelectrolyte chain with the macroio
the term proportional toM in Eq. ~21!, determines the overal
configuration of the chain.

The strong-coupling limit entails, however, two differe
polyelectrolyte equilibrium states as discussed above,
pending on the minimization with respect tor01, r02: the
first state, stable for small values of the separation betw
the macroions, is due to thestrong-pairingconfiguration of
the chain withr015r025

1
2(r11r2). The variational equation

for z in this case reads

3

2
z25

,BN

pa3 F25/2MgS&2a Ur12r2U , ka

&
D 23Ng~0,ka!G ,

~23!
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while the corresponding free energy has the form

bF052bF2~ ur12r2u!2
,BN

pa H 27/2MF f 1S&2a Ur1

2r2U , ka

&
D G26N f1~0,ka!J . ~24!

The form of the dependenceF2(ur12r2u) is of course given
implicitely via the dependence ofz and a. Once again, the
chain here is bound to both macroions and its statist
properties are dominated by the interaction with the char
on the macroions. One would expect that the polyelectro
mediated interactions between the macroions would be st
gest in this case. Obviously, for large enoughur12r2u the
RHS of Eq. ~23! can become negative, going first throug
zero. This is due to the fact thatg(y,t) is a decaying function
of y. At this point the above solution ceases to be stable
we have a transition from the strongly paired to weak
paired branch of the strong-coupling limit. The transition d
pends on the macroion parameters such as the magnitud
their charges as well as the length of the chains. In this se
it represents a finite-size~of the chains! effect.

The weakly paired configuration is characterized byr01

5r1 andr025r2 and is the stable branch at larger separatio
between the macroions. Here the variational equation foz
becomes

3

2
z25

,BN

pa3 H 23/2MFgS 0,
ka

&
D 1gS&a Ur12r2U , ka

&
D G

22NgS ur12r2u
a

,kaD2Ng~0,ka!J . ~25!

The corresponding free energy in this case can be obtaine

bF05bF2~ ur12r2u!2
,BN

pa H 25/2MF f 1S 0,
ka

&
D

1 f 1S&a Ur12r2U , ka

&
D G24N f1S ur12r2u

a
,kaD

22N f1~0,k!J . ~26!

The most important term to determine the conformation
the chain is the interaction with the single macroion and
thus only weakly dependent on the separation between th
These are the first and last terms on the RHS of Eq.~25!. The
separation-dependent terms act only as a perturbatio
these terms. It is thus to be expected that the polyelectro
mediated interactions will be much weaker in this case.

Also in order to get theinteraction free energy in the
weakly paired configuration one needs in addition to subtr
the terms that do not depend on the separation between
macroions from the total free energy. This is the stand
way to get the interaction free energy. Again, the form of t
dependenceF2(ur12r2u) is given implicitely via the depen-
dence ofz anda.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The form of the solution of Eqs.~17! and~25! as well as
the corresponding polyelectrolyte-mediated interaction f
energy is presented in Fig. 2. We see that at small eno
separations the chain is in the strongly paired configurat
being confined symmetrically by both macroions. In this
gime the external field trying to confine the chain to bo
macroions wins over the chain entropy that is expanding
chain. The entropy of the parts of the chain spanning
region between the macroions is quite low. Its size, as
scribed by a, in this case depends monotonically o
the separation between the macroions that are effecti
stretching it.

At the instability point, reached at a well-defined val
of the separation between the macroions, the chain ent
scores a partial victory over the interactions with the mac
ions forcing the chain to remain close to the macroion
which it is grafted. At this transition the chain basically r
laxes the low-entropy configurations of its parts confined
tween both macroions by snapping back to the macroion
which it is grafted. After that the size of the chain is basica
determined solely through the interactions of the chain w
its grafting macroion and remains constant with separa
between the macroions. These conclusions reached on
basis of the two chain variational approach are very sim
to the existing simulation data15 for one chain in the field of
two macroions.

This scenario of chain conformations is clearly illu
trated in Figs. 2 and 3 where one can follow the transition
the chain from the strongly paired to the weakly paired c
figuration via the changes ofa as a function of the separatio
between the macroions for two different values of the io
strength of the univalent salt solution: viz., 1 and 60 m
Clearly, the overall effect of the salt is to quench the mag
tude of the bridging interaction. We note about one orde
magnitude difference in the strength of the bridging attr
tion at both salt activities. The increase in salt activity a
quenches the difference between the weakly paired
strongly paired configurations. If we compare the radius
gyration of the chain~lower graphs in Figs. 2 and 3!, we see
that at higher salt the separation between the macroions h
smaller effect on the size of the chain.

The ensuing chain-mediated interaction free energy
lows closely the equilibrium configuration of the chain b
tween the macroions. For a strongly paired chain the in
action free energy shows a pronounced attrac
contribution stemming from the couplingM3N term in Eq.
~24!. At the point where the chain snaps from the stron
paired to the weakly paired configuration there is also a c
responding jump in the free energy due to much-le
pronounced chain-mediated interactions. It is interesting
analyze the asymptotic behavior of the interaction free
ergy, Eq.~26!, in the weakly paired branch of the solutio
Expandingf 1(y,t) for large values ofy, we see that all the
chain-dependent parts of the free energy finally just ren
malize the direct Debye–Hu¨ckel interactions between th
macroions. Thus asymptotically instead of a Debye–Hu¨ckel
interaction of strength proportional toM2, we simply end up
with its strength being proportional to (M2N)2. The chain
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snapped back to the grafting macroion and simply renorm
ized its charge.

There is one interesting remark that we can make h
Gurovitch and Sans28 studied polyelectrolyte adsorption of
single chain to a~point! charged macroion. Their case thu
correspond to a weakly paired branch at infinite separa
between the macroions in our terminology, which would c
respond to Eq.~25! with ur12r2u→`, leading to

3

2
z25

,BN

pa3 F23/2MgS 0,
ka

&
D 2Ng~0,ka!G . ~27!

Clearly, in the vanishing salt limitka→0, which is in fact
the case treated in Ref. 28, the polyelectrolyte chain
adsorb until its charge~or the number of monomers! be-
comes equal toN523/2M ; there is thus maximal overcharg
ing in the amount of 23/2'2.83, which is indeed very clos
to the value derived by them by a completely differe
method—viz., 15/652.5. Though the approach of these a
thors has been criticized,28 our results are more then consi
tent with theirs. More could be said on polyelectrolyte a

FIG. 2. bF0 anda in the strong-coupling limit. The upper graph shows t
dependence ofbF0 for M5100 for N510 ~losenge!, 30 ~square!, and 100
~circle! at 1 mM on the separation between the macroionsur12r2u. The
lower graph shows the dependence of the size of the chaina on the separa-
tion between the macroions for the same values of parameters. The leng
the chainN obviously determines the separation between macroions wh
the snapping of the chain between the strongly paired and weakly pa
states occurs. In the strongly paired configuration we have a well-develo
regime of attractive bridging interactions, leading to a an effective scree
Coulomb repulsion in the weakly paired regime. In all cases,510. The
bold line represents the pure Debye–Hu¨ckel interactions between the mac
roions.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sorption and overcharging,23 but we will focus here strictly
on the interaction: i.e., bridging aspects of the problem.

VI. WEAK-COUPLING LIMIT

In this case the effect of electrostatic self-interaction
the chain, the term proportional toN in Eq. ~18!, determines
the overall configuration of the chain. If the effect of th
external fields would be indeed negligible, we have shown
a previous publication21 that the electrostatic interaction
would stiffen up the chain and give it a rodlike appearan
quantified by the scalinga;N. We expect that even with
external fields originating at the macroions the chain w
essentially assume this type of extended configuration
this limit, modified by the perturbative effect of both macr
ions. Simulations of single-chain adsorption23 are completely
consistent with this picture since for largeN protruding rod-
like tails are observed that correspond to electrostatic
stiffened portions of the chain. Calculations of Nguyen a
Shklovskii29 also lead to the same qualitative picture of cha
adsorption in this limit. Again, here we are not interested
adsorptionper se, but rather in the bridging effects in inte
action between the macroions, so we will skip the detai
comparison of our work with polyelectrolyte adsorptio
studies.

With the external fields present the stiffening of t
chain depends on the details—i.e., the strength of the t
proportional toM in the variational equation~18! and is dif-

FIG. 3. bF0 anda in the strong-coupling limit. The upper graph shows t
dependence ofbF0 for M5100 for N510, 30, 100 at 60 mM on the
separation between the macroionsur12r2u. The lower graph shows the de
pendence of the size of the chaina on the separation between the macroio
for the same values of parameters. The bold line represents the pure De
Hückel interactions between the macroions.
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ficult to quantify in scaling terms, unless the effect of t
macroions is thoroughly negligible, which is not the situati
we are trying to investigate. Since here the effect of
macroions is small, the polyelectrolyte chains can never
strongly paired by both macroions. We thus remain sol
with the weakly paired configuration of the chains due to
grafting to the macroions. The solution of the variation
equation~18! thus only has one branch in this case and
given by

3

2
z25

,BN

pa3 H 2NgS ur12r2u
a

,kaD1Ng~0,ka!

223/2MFgS 0,
ka

&
D 1gS&a Ur12r2U , ka

&
D G J .

~28!

Clearly, this equation is obtained by the substitutionz→ i z
from Eq. ~18!. This transformation should be taken into a
count also in Eq.~6!, leading to

a25
1

3z
L8S z,2N

2)
D , ~29!

where nowL8(x)51/x2cotx. The interaction with the mac
roion, theM term in Eq.~28!, can modify the value of the
size of the chain, but it has no effect anymore on the stab
of the solution. The numerical solutions to Eq.~28! are pre-
sented in Figs. 4 and 5. Clearly, the size of the polyelec
lyte chain in this case shows no discontinuities, though i
still, to a lesser extent than before, effected by the positi
of the two macroions. The weak-coupling term thus see
appropriate for the behavior of the chain in this region of t
parameter space.

The free energy is now given by an equation similar
Eq. ~26!, but with the changez→ i z well taken into account
in F2(ur12r2u). It leads to the following result:

bF056 log

sin
z,N

2

z,N

2

13z2Na2

2
,BN

pa H 25/2MF f 1S 0,
ka

&
D 1 f 1S&a Ur1

2r2U , ka

&
D G24N f1S ur12r2u

a
,kaD

22N f1~0,ka!J , ~30!

again because the solution of the variational equations h
remains on a single branch all the time, showing no ju
from one stable branch to another one~‘‘snapping’’ of the
chain!. The free energy shows no discontinuities eith
though it still depends on the separation between macroi

This state of affairs introduces new features in t
polyelectrolyte-mediated interactions. First of all, there is

e–
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clearly discernible~see Fig. 4! repulsionat smaller separa
tions. It is due to the interpenetrating ‘‘coronas,’’ i.e., e
tended configurations of the grafted chains, on approac
the macroions. If there would be many chains grafted to b
macroions, this incipient repulsion would develop into a fu
blown brush repulsion regime. Since we have only one ch
per macroion, the effect of ‘‘coronal’’ interpenetration
rather weak, but nevertheless clearly discernible. Its ra
depends on the size of the chainN as well as the amount o
salt which regulates the overall extension of the cha
Figure 5 clearly shows that salt quenches the ‘‘coron
repulsion.

It is only at larger separations~see the inset of Fig. 4!
that residual, indeed very weak coupling, is finally discern
The electrostatically extended chains can still make w
bridges to the other macroions, but since this can hap
only at sufficiently large separations, the ensuing bridging
much attenuated. On adding the salt this effect is displa
towards smaller separations because the extent of the cha
diminished by the salt as well. For larger ionic strengths
are thus left with weak coupling at smaller separations~see
Fig. 5!, where it is nevertheless stronger than in small s
~compare again inset to Fig. 4!. Bridging, no matter what its

FIG. 4. bF0 anda in the weak-coupling limit forM540 andN550, 20, 10
at 1 mM. There exists only a weakly paired state in this case and the e
of the external fields of the macroions is much less pronounced then in
strong coupling limit. The length of the chainN determines primarily the
steric repulsion effect due to the interpenetration of stiffened grafted cha
the ‘‘coronas’’ of both macroions, on close approach. The inset shows
residual very-weak-coupling interaction at large separations between
roions with N5100. The size of the chain tends to grow slightly on a
proach of the macroions because of the interpenetration of the ‘‘coronas
both macroions. The bold line represents the pure Debye–Hu¨ckel interac-
tions between the macroions.
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source, is of course strongly dependent on the separat
between the macroions and is in general stronger for sma
separations. Clearly, the weak-coupling interaction in
case of large salt resembles much more ‘‘sticky macroio
than ~relatively! long-range bridging interaction.

In the weak-coupling limit there is thus an addition
feature stemming from the polyelectrolyte mediated inter
tions which is due to ‘‘coronal’’ interpenetration and mar
the incipient brush repulsion that would be developed fully
more chains were grafted to each macroions. The~weak!
bridging attraction in this case is overall small and is
constant competition with ‘‘coronal’’ interpenetration inte
actions.

VII. DISCUSSION

The polyelectrolyte bridging interaction analyzed here
obviously very rich in its features and depends crucially
the region of the parameter space under investigation.
showed that attractive bridging interactions effectively co
in two varieties: the strong coupling, where interactions b
tween the chains and the macroions are dominant, and
weak coupling, where self-interactions of the chains
dominant. Bridging interaction can be obtained in both ca
but is a couple of orders of magnitude larger in thestrong-
coupling limit. It the weak-coupling limit the attractive

ct
he

s,
e
c-

of

FIG. 5. bF0 anda in the weak-coupling limit forM540 andN550, 20, 10
at 60 mM. Clearly, again, the overall effect of the salt is to quench
effects of the macroion fields. There is weak residual bridging at very sm
separation now: note the scale of the interactions energy, which g
smoothly into a weak ‘‘corona’’ repulsion at larger separations. The det
of both the residual bridging as well as ‘‘corona’’ repulsions depend on
values ofM andN. The bold line represents the pure Debye–Hu¨ckel inter-
actions between the macroions.
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bridging interactions are overwhelmed by the incipient el
trostatic repulsions between the overlapping polyelectro
‘‘coronas’’ as well. In both cases, however, the effecti
polyelectrolyte-mediated interaction potential is strong
nonmonotonic and shows pronounced variation with resp
to the length of the polyelectrolyte chains and the screen
length of the underlying electrostatic interactions.

The variational formulation of the bridging interactio
problem, which lies at the basis of our approach, has sev
advantages as well as drawbacks. The main feature of
formalism is that it allows for the transition between t
strong pairing and weak pairing states of the polyelectro
chains which is clearly a finite-size effect and would thus
missed on the ground-state dominance level. The latter
been used successfully for the polyelectrolyte-mediated
teractions between macroscopic surfaces with interven
long polyelectrolyte chains.13,16Another feature of the varia
tional formulation is that it can describe the snapping of
chain at large enough macroion separations which is
most important feature of a finite chain size effect. We ne
to reiterate again that this phenomenon is absent in
ground-state dominance ansatz. The snapping of the c
from the configuration where it is partitioned between bo
macroions to one where it is adsorbed to a single one i
course due to an interplay and balance between chain ad
tion energy, chain self-interaction energy, and configuratio
entropy of the chain. The balance depends on the size o
chain and the separation between the macroions and lea
an abrupt transition between the two configurations that h
well-discerned imprint also on the polyelectrolyte-media
interaction between the macroions. In general, one s
bridging only for chain cofigurations where it is partitione
by the two macroions symmetricaly, i.e., in what we dubb
the strong-pairing configuration.

The attractive bridging interaction is typicaly about 1
times stronger in the strong-coupling limit if compared to
weak-coupling counterpart~whence the designation of th
two limiting cases!. This is intuitively quite easy to grasp
since one can expect strong coupling to emerge only w
the interactions between the chain and the macroions do
nate the statistical properties of the system. If however
dominant interactions in the system are self-interactions
the chains, the polyelectrolytes clearly mediate only ins
nificantly the interactions between the macroions. In t
case a much more important feature of the interaction is
interpenetration of the polyelectrolyte ‘‘coronas,’’ which ca
in some cases lead to pronounced repulsions betw
‘‘dressed’’ macroions. These repusions would clearly sta
lize the macroion interactions.

The main drawback of the present analysis of the bri
ing interaction problem, apart from it being a purely pairwi
additive formulation, is the linearized~Debye–Hu¨ckel! form
of electrostatics. All nonlinear effects are thusa priori ex-
cluded. On this level the main effect of the salt is to attenu
the bridging interaction as well as the repulsive interact
between the polyelectrolyte ‘‘coronas.’’ In this respect t
variational approach is inferior to the ground-state dom
nance ansatz. One possible way out would be to formu
also the electrostatic part of the problem on a variatio
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level where all the Debye–Hu¨ckel parameters would be de
termined self-consistently. We leave this exercise for fut
work.

Another important omission of our method is the size
the macroions that does not feature explicitly in our form
lation. The finite size of the chain in weakly paired
strongly paired configuration clearly showed by our nume
cal results~see the lower graphs in Figs. 2 and 3! is thus not
due to the finite size of the adsorbing macroions as in m
realistic simulations,15,23 but is an entropy–energy compet
tion effect: high adsorption energy versus low configu
tional entropy in the weakly paired state, leading to the fin
size of the weakly paired state even with a point adsorb
macroion. The omission of the finite size of the macroi
tends to overestimate the polyelectrolyte-mediated inte
tions and underestimate the size of the chain in the wea
paired as well as strongly paired configurations. This type
finite-size effects can be straightforwardly incorporated in
the statistics of free, noninteracting chains,30 but would be
unfortunately difficult to incorporate into the Feynman
Kleinert variational method and were thus ignored in o
formulation. Alternative approaches would thus have to
considered.31

At this stage it does not seem reasonable to compare
second virial coefficient derived from our calculation of th
effective pair interactions with the experiment on NCPs10

There would be just too many adjustments that one wo
have to put in by hand, but that would have a crucial eff
on the ensuing numerical results: the effective charge
the macroion due to nonlinear Poisson–Boltzmann effe
the effective charge of the chains which depends strongly
the local ionic equilibrium of the dissociable amino ac
groups, the effective length of the chains that are free eno
to behave as flexible polyelectrolytes, etc. Nevertheless
one chooses to ignore all these additional complications,
virial coefficient in the strong-coupling limit comes out a
ways monotonically~decreasing! dependent on the screenin
length: i.e., ionic strength. No nonmonotonic effects, of t
type that feature so prominently in experimental results,10 are
ever seen for any reasonable values of parameters~i.e., the
charges on the macroions, the length of the chain,
charges on the chain!. Basing our conclusion on the analys
presented above, we are inclined to believe that the polye
trolyte bridging itself never leads to a nonmonotonic seco
virial coefficient. One nevertheless has to keep in mind t
our model calculation is based on many constraints that
not entirely realistic.

Our work represents an alternative formulation of t
polyelectrolyte bridging interaction between two small ma
roions on the two-particle level. The finite-size effects of t
chain length make obviously a strong imprint on the bridgi
interaction. These effects have not been studied previo
analytically and are missed by the more popular ground-s
dominance mean-field approach. In this respect we beli
our work adds an important feature to our understanding
the phenomenon of polymer-mediated interactions.
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~1989!; M. R. Böhmer, O. A. Everaers, and J. M. H. M. Scheutjen
Macromolecules23, 2223~1990!.

15R. Podgornik and B. Jo¨nsson, Europhys. Lett.24, 501 ~1993!; R.
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